Project 2: Fun with Filters and Frequencies!

By Tony Wan

Part 1: Fun with Filters

Part 1.1: Finite Difference Operator

To compute the gradient magnitude, I used the humble finite difference Dx=[1 -1] and Dy = [1 -1]T to convolve with the image to get the gradient in x and y directons. Then I take the square root of their quadratic sum to get the magnitude of the gradient.

cameraman.png Binarized Gradient Magnitude.png Gradient Magnitude.png Partial Derivative.png

Part 1.2: Derivative of Gaussian (DoG) Filter

The smoothed image has less noises and clearer edges. I can convolve just once and get an equivalent result.

Derivative of Gaussian.png Smoothed Partial Derivative.png Smoothed Gradient Magnitude.png Smoothed Binarized Gradient Magnitude.png DoG Partial Derivative.png DoG Gradient Magnitude.png DoG Binarized Gradient Magnitude.png

Part 2: Fun with Frequencies!

Part 2.1: Image "Sharpening"

Taj.png Golden Gate.png

Part 2.2: Hybrid Images

The train one kinda failed since the white train on the right is pretty visible both close and far.

DerekPicture.jpg nutmeg.jpg Derekat.png train left.jpg train right.jpg trains.png stairs.jpg Mitsuha Taki.jpg Your Name.png Your Name FFT.png

Part 2.3: Gaussian and Laplacian Stacks

apple.jpeg orange.jpeg Orange Gaussian Stack.png Apple Laplacian Stack.png Orange Laplacian Stack.png Apple_Orange_Level 0.png Apple_Orange_Level 2.png Apple_Orange_Level 4.png Apple_Orange_Cumulative.png

Part 2.4: Multiresolution Blending

eclipse.jpg Campanile.jpg Eclipse_Campanile_Level 0.png Eclipse_Campanile_Level 2.png Eclipse_Campanile_Level 4.png Eclipse_Campanile_Cumulative.png boat.jpg lake.jpg Lake_Boat_Level 0.png Lake_Boat_Level 2.png Lake_Boat_Level 4.png Lake_Boat_Cumulative.png